

Location Notes Example updates API Calls Adhoc Settings Contact

The driver’s settings are held in the registry (Windows) and a settings file, tbupdd.ini

Settings Location Description

tbupddsu – click link for settings definitions

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\

Setting that relate to the Windows kernel mode
element of the driver.

tbupddwu - click link for settings definitions

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\

Setting that relate to the Windows user mode
element of the driver.

Tbupdd.ini - click link for settings definitions Main driver and device settings

Operating system Location

Windows

UPDD Application folder

(e.g. c:\program files\UPDD)

Linux /opt/tbupddlx

Mac OS X 4.1.10 - /tbupddmx

5.0.x - /Library/Preferences

Solaris /opt/tbupddso

CE \Windows

Setting file notes

File location

The settings file is managed by the driver and must always be located in the same folder as the active copy of the driver
module tbupddwu (or the parent folder on 64 bit windows systems).

Settings file backups

UPDD maintains backups the settings files, tbupdd.ini, to allow for recover in the case of system crashes where the updd
settings are corrupted.

Tbupdd.ini.bak.date-time, e.g. Tbupdd.ini.bak.20100821-010703

Each time settings are changed a backup is created. These files are small in size and in normal use this is unlikely to cause
an issue; however in test systems sometimes a larger number of files are created and even though this is insignificant in
practice it has raised concerns with some integrators. This behaviour can now be suppressed by creating a working copy of
the settings file tbupdd.ini called tbupdd.ini.master. In the event of a recovery being needed this master file is used. NB this
will return all settings to those in effect at the time the master copy is created. With this file in place no further backups are
created and existing ones can be manually deleted or they will be in any case be deleted automatically as they expire.

When the settings file is opened the driver checks for validity and if this check fails it references the backup files until a
valid setting file is found. This was implemented to overcome corrupted files due to power outage corrupting open files in
very specific system configurations.

The backup files are deleted once they are greater than 3 days old.

Setting file layout

The settings held in the tbupdd.ini file are placed in different sections relative to their meaning as follows:

Click on the branch to see settings held in the section and their meaning.

Global driver settings [UPDD] High level driver and system configuration
settings

General driver settings [UPDD\parameters] General driver and system settings

Configured Device Settings [UPDD\parameters\N] Specific device settings, one for each
device configured in the driver.

Device sub-section and nodes Sub sections related to the device

 Calibration [UPDD\parameters\N\calibration styles\N] Calibration style specific settings. One
branch for each calibration style associated
with the touch device

 macros [UPDD\parameters\N\macros\N]

(N= 1,2,3 and 4)

UPDD macro string defined for when the
controller starts (0), Controller stops (1),
driver loads (2), driver unloads (3)

 Toolbars [UPDD\parameters\N\toolbars\N] Toolbar settings. One branch for each
toolbar defined on the touch device.

Default device settings [UPDD\parameters\controller\tsNNN] Default device settings for each touch
device supported by the driver package.
When a device is configured in the driver
(via PnP or manually added in the case of
serial or ps/2) the driver creates a new
device section [UPDD\parameters\N] from
these default settings. It then references
the [Extra] settings branch to see if there
are any settings defined here for a given
device that should overwrite the default
settings.

[Extra] Extra (overwrite) device settings used
when a device is configured in the driver.

 UPDD Settings

 Revision 1.4 – 9th April 2014

www.touch-

base.com\documentation\API

Page 1 of 4UPDD Settings

13/05/2014http://touch-base.com/documentation/Settings.htm

Updating the settings

The are numerous ways to update the driver settings:

� Customised setting

These can be defined in a custom settings file that is used during software install to override default settings.

� UPDD Console

UPDD Console, where available, allows for standard general settings to be updated via the GUI.

� UPDD API

UPDD Application Program Interface (API) interface defines both specific function calls to update a defined setting and
generic update settings function calls.

� Command line

Utilise the command line interface to update device settings. Prior to version 4.1.10 the command line interface was
available via the TBcalib program. From 4.1.10 onwards there is a separate command line interface program called
TButils.

� UPDD Specialised dialogs

Some specific setting sets, such as UPDD TUIO Server or UPDD Gesture definitions, have their own dialogs to update
related settings.

� Manual Update

Using a file editor to manually update settings.

Example Setting updates

This section highlights a number of useful setting that control some of the more common function and features that are not
exposed via the UPDD Console.

Some UPDD functions have specific UPDD API calls but other functions are simply controlled by the value of a setting in the
settings file. If, as a programmer using the UPDD API, there is no obvious API call to implement a desired function it may be
possible to invoke the function simply by changing the file setting and applying the change using call TBApiApply or
TBApiApplyNoReload as appropriate. Other examples, when using TButils to update the settings, can be found here.

Touch packet filters

In some circumstances it may be desirable to not process the initial touch packets but to filter them out either based on
packet count or time threshold.

In a few cases dealing with some very old touch controllers we noticed that the first few data packets did not carry the correct
x and y co-ordinate as the controller took a few packets to ‘zero’ in on the point of touch. In this instance we were able to set
the TouchDownFilter setting to discard the number of inaccurate packets.

In another case we had a customer using a projected capacitive controller in an environment where the ambient electrical
noise was causing the touch controller to generate the occasional random touch when the touch screen was not in use. We
implemented a touch filter based on touch duration so that the driver will ignore any touches less than specified touch
threshold. In the examples below the driver would filter out the first 3 data packets and ignore touches less than 100ms in
duration:

Touch clicks only

Some applications or system users do not want to generate motion when the touch device is in use. Touch pointer motion is
determined by the controller setting Motion being set being disabled (0) or enabled (1)

Show system tray

To enable or disable the system tray icons set the general setting ‘Show systray’ to 0 (disable) or 1 (enable).

Enable or Disable a device

To enable or disable a device set the controller setting ‘Enabled’ to 0 (disable) or 1 (enable), passing the Device Handle of the
device.

<eof> End of file marker. If missing, the driver
discards the setting file as corrupt and
uses the backup file

Command Line API

tbcalib [Device=N] /setting:touchdownfilter=3

tbutils [Device N] setting touchdownfilter 3

TBApiSetSettingDWORD(passedDeviceNumber,_T
("touchdownfilter "),3);

tbcalib [Device=N] /setting:touchdowntimefilter=100

tbutils [Device N] setting touchdowntimefilter 100

TBApiSetSettingDWORD(passedDeviceNumber,_T
("touchdowntimefilter "),100);

Command Line API

tbcalib [Device=N] /setting:motion=1

tbutils [Device N] setting motion 1

TBApiSetSettingDWORD(passedDeviceNumber,_T("Motion"),1);

Tbcalib [Device=N] /setting:motion=0

tbutils [Device N] setting dw motion 0

TBApiSetSettingDWORD(passedDeviceNumber,_T("Motion"),0);

Command Line API

tbcalib Device=0 "/setting:Show Systray=1"

tbutils Device 0 setting “Show Systray” 1

TBApiSetSettingDWORD(0,("Show systray"),1);

tbcalib Device=0 "/setting:Show Systray=0"

tbutils nodevice "setting dw “Show Systray” 0

TBApiSetSettingDWORD(0,("Show systray "),0);

Page 2 of 4UPDD Settings

13/05/2014http://touch-base.com/documentation/Settings.htm

Set UPDD language

UPDD implements its own language system and translation files are supplied for various languages and new ones are easily
implemented via the language tool. This means that the UPDD can display its own language within its dialogues irrespective of
the system’s locale (assuming code pages are available to display the characters).

To enable a specific language use the TBApiSetSettingSZ call to set the bundle registry key ‘Language’ to a language value;
i.e. FR = French, EN = English, JP = Japanese, ES = Spanish, DE = German, IT = Italian etc.

Settings API calls

There are a number of generic API function calls to set and retrieve entries in the settings file. See the individual calls for
more information.

Some of these API's perform special processing that may be extended in future releases. For example, for
TBApiSetSettingSZEx, if the aName argument is set to "Calibration Style" and aSubtree equals "", the indicated style (in
argument aSZ) is activated. e.g. for calibration styles - use aSubTree = "" to emulate the "non-extended" versions

The following example shows the settings that make up a typical UPDD sub-section:

TBUPDD.ini file

[UPDD]\Parameters\1\Number Of Calibration Styles - item count

[UPDD]\Parameters\1\Calibration Style - active item name

[UPDD]\Parameters\1\Calibration Styles\0\Calibration Style - item name

[UPDD]\Parameters\1\Calibration Styles\0\... - other item data

These calls work exactly the same in all OS environments.

Ad hoc settings

Some pointer devices have certain characteristics or functions that are not utilised by UPDD but may require settings to be
held by UPDD that relate to these characteristics. These settings, which are not used by UPDD, are stored in the settings file
as device-specific configuration details to allow retrieval via the API if required.

Application programs may need to retrieve these settings. For example, a program using a digitizer tablet may need to lookup
device characteristics, such as the device width in inches. In this case UPDD will be shipped with preset values in:

[UPDD\Parameters\n\Ad Hoc Settings]

where n is the device number. This entry holds a semi-colon separated list of device specific settings in the following format:

VALUE NAME;VALUE TYPE;SETTING[crlf]VALUE NAME;VALUE TYPE;SETTING [crlf]…

Where:

Using the VALUE NAME and VALUE TYPE it is possible to enumerate through the actual registry settings (if they are unknown)

Command Line API

Tbcalib [Device=N] /enable

Tbutils [Device N] enable

TBApiSetSettingDWORD(passedDeviceNumber,_T("Enabled"),1);

Tbcalib [Device=N] /disable

Tbutils [Device N] disable

TBApiSetSettingDWORD(passedDeviceNumber,_T("Enabled"),0);

API Call Description

Global driver settings [UPDD]

TBApiGetGlobalSettingDWORD Get global DWORD setting

TBApiSetGlobalSettingDWORD Set global DWORD setting

TBApiGetGlobalSettingSZ Get global String setting

TBApiSetGlobalSettingSZ Set global String setting

General driver settings [UPDD\parameters] (device = 0)

Configured Device Settings [UPDD\parameters\N] (device = 1)

TBApiGetSettingDWORD Get DWORD setting

TBApiSetSettingDWORD Set DWORD setting

TBApiGetSettingSZ Get String setting

TBApiSetSettingSZ Set String setting

There are also extended versions of the above that allow a named sub-section and node to be accessed:

Device sub-section and nodes [UPDD\parameters\N\[sub-section]

TBApiGetSettingSZEx Extended get String setting

TBApiSetSettingSZEx Extended set String setting

TBApiGetSettingDWORDEx Extended get DWORD setting

TBApiSetSettingDWORDEx Extended set DWORD setting

Default device settings [UPDD\parameters\controller\tsNNN]

TBApiGetControllerDWORD Get DWORD setting

TBApiGetControllerSZ Get String setting

VALUE NAME Name of the ad hoc setting

VALUE TYPE Type is either an ‘S’ indicating the value is held as a string or ‘H’ for hexadecimal
([crlf] is a carriage return/linefeed combination used as a separator).

SETTING The actually setting

Page 3 of 4UPDD Settings

13/05/2014http://touch-base.com/documentation/Settings.htm

by calling either TBApiGetSettingSZ (for string values) or TBApiGetSettingDWORD (hex values) for each VALUE NAME. Note
that the SETTING shown may match the actual registry entry but it is safer to access the latter as this may have been
changed (under application control) from the factory settings.

However, to make life easier, an API call is available which will enumerate through any ad hoc settings, - see
TBApiEnumAdhocValues for more details.

Example of ad hoc settings:
Registry value “Ad Hoc Settings” could contain:

AHOrigin_X;S;Lower Left[crlf]AHOrigin_Y;S;Lower Left[crlf]AHCTX_ORG_X;X;14[crlf]AHCTX_ORG_Y;X;14

The actual setting values are:

AHOrigin_X = Lower Left (string)
AHOrigin_Y = Lower Left (string)
AHCTX_ORG_X = 14 (hex)
AHCTX_ORG_Y = 14 (hex)

Note: If ad hoc settings have been defined for a device, the settings can be viewed using the UPDDDEMO demonstration
program or directly in the tbupdd.ini file. Conventionally, all ad hoc settings are prefixed ‘AH’.

Contact

For further information or technical assistance please email the technical support team at technical@touch-base.com.

Page 4 of 4UPDD Settings

13/05/2014http://touch-base.com/documentation/Settings.htm

