

Linux:- Deliverables Interfaces Libraries Integration Notes Calibration Utilities API Contact

Originally launched as OPDD (Open Pointer Device Driver) for Linux this driver has now been renamed to SPDD (Source
Pointer Device Driver) for two reasons; 1: the term ‘Open’ can often mean ‘Open source – available to all under open
source licence” and our driver is not open in this sense and 2: the source code can, in theory, be made available for any
OS, not just Linux.

This driver is available for environments where a source driver is required rather than the binaries installed with the
standard UPDD driver. The driver could be made available for any OS but is currently only available for Linux. Should a
source driver be required for a different OS please contact us to discuss your requirements.

Costs

There are potentially two sets of costs involved.

1. The cost of the source code – which we do not distribute under a GNU GPL license. Our license allows you full
access to the source code for your own use as you see fit, including modifications, and caters for unlimited
distribution with your systems, hardware etc. The license fee includes adding touch device support in your project. It
does not allow for onward distribution of the source code.

2. Cost of any modifications required to satisfy your requirements not covered by the license fee, such as a touch
interface method not supported or specialised requirements.

Please contact Sales, sales@touch-base.com, to discuss your specific requirements. The source code and deliverables will
be tailored to your exact needs.

Copyright

The source code is supplied under licence to be used in systems directly associated with the purchaser of the license or its
subsidiaries and customers. The source is not supplied under a GNU GPL license and therefore should not be made
available to a wider audience. Each source module carries the following copyright notice that should not be removed:
/*

PROGRAM ID: OPDD/SPDD
PURPOSE: Generic pointer device driver
AUTHOR: TOUCH-BASE LTD

COPYRIGHT (c) TOUCH-BASE LTD 2010-2015. ALL RIGHTS RESERVED.
THESE NOTICES MUST NOT BE REMOVED BY SOURCE LICENSE HOLDERS.
The use or distribution of this software without express written
permission of the author is strictly prohibited.

*/
This document describes the current implementation of our source offering, initially for Linux. Others will be documented as
appropriate.

Linux
Our standard Linux driver installs binary modules and this is very useful for pre-configured Linux systems, non technical
user, UPDD API interface, multiple controller support, simple installation etc. However, we recognise that some Linux
integrations require the driver to be available in source code. To this end we have written an extensible source solution
that can be modified to interface with Linux touch implementations as requested. This driver is made available, at a cost,
to touch screen manufacturers and integrators on a per request basis.

Release Notes

Linux has a number of touch interfaces such as X – single and multi touch, TSlib, TUIO, evtouch, evdev and others. Then of
course there are the 100’s of different touch protocols implement by different touch devices. These release notes reflect
the support we have implemented with each release:

Deliverables

The full driver suite is delivered in a compressed file opdd.tgz and consists of the following files:

Release Date Description

1.0.0 May 2010 Tslib interface, serial controller support

Zytronic ZXY100 protocol definition

1.0.1 Sept 2010 X interface, generic calibration routine, USB controller support, EEprom
calibration storage

Zytronic ZXY protocol definition

1.0.2 Dec 2010 Support Data Modul USB

API added, demo program

1.0.3 Feb 2011 EEprom read and write API

1.0.4 June 2011 ELO Smartset USB and Serial definitions added

1.0.5 April 2013 Add virtual HID (uinput) support

1.0.6 Dec 2014 Add TRS USB support

File Description
opdd.ini Settings file - can be found in the "driver" directory of the OPDD source package
opdd.c Interface module
opdd.zip Project
Oputil General utilities program
Calibrate Generic calibration program if required. i.e. TSlib has its own calibration program and utilities

Revision 1.7 19th April 2013

www.touch-base.com\documentation\installation

 SPDD – Source driver

Page 1 of 8OPDD - Open Source driver

23/01/2015http://touch-base.com/documentation/OPDD.htm

Only those modules relevant to your requirements will be delivered.

The software is distributed in source form. You will need to compile the software and libraries for the target

system.

Interfaces

Tslib

Tslib, available here, is an abstraction layer for touch screen panel events, as well as a filter stack for the manipulation of
those events. It was created by Russell King, of arm.linux.org.uk. Examples of implemented filters include jitter smoothing
and the calibration transform.
Tslib is generally used on embedded devices to provide a common user space interface to touch screen functionality. It is
supported by Kdrive (aka TinyX) and OPIE as well as being used on a number of commercial Linux devices“
We have written the modules required to interface touch hardware to the Tslib abstraction layer so that any Tslib based
Linux distribution or Tslib based applications will function as expected.
X

The X Window System (commonly known as X or X11) provides a windowing layer and manages the pointer device.

We have written an X interface to generate system pointer motion and mouse click emulation.

Virtual HID

Creates a Virtual touch device and passes stylus data via this device.

Library utilisation

OPDD utilises a number of software libraries:

You must install the relevant libraries on your Linux development system as outlined below.

ACE

ACE is a low level inter process communication library used by the driver and its modules. For basic processors, such as
X86, we can supply the ACE library in binary format if required.

To install ACE if supplied with OPDD:

1. Open a terminal

2. Type "su" and enter the root password

3. Copy acelinux.tgz to /usr/src. eg "cp /home/user/acelinux.tgz /usr/src"

4. Type "cd /usr/src"

5. Type "tar zxvf acelinux.tgz"

6. Type "mkdir /devl/"

7. Type "ln -s /usr/src/ACE_5.6 /devl/ACE_5.6"

Note that you will need to copy the ACE library

(ACE_5.6/ACE_wrappers/ace/libACE.so.5.6.0) to a directory already included in the library search path (e.g. /usr/local/lib)
or to a directory that you add to the search path yourself (e.g. the OPDD install directory).

Download from the LibACE Web page

OPDD uses ACE lib 5.6.2

This is considered an old version of the ACE library which is currently available from

http://download.dre.vanderbilt.edu/previous_versions/

Build instructions are here http://www.dre.vanderbilt.edu/~schmidt/DOC_ROOT/ACE/ACE-INSTALL.html

There are compatibility issues with later versions of ACE so it is likely that ACE libraries supplied as part of a Linux
distribution are unlikely to be compatible.

One customer reported patches (with GCC 4.4.4) were needed before they were able to build ACE.

Another customer had issues building the ACE library in their environment and based on these issues we make these
recommendations:

1) ACE offers two build methods, autoconf and traditional. We generally find the traditional makefile method works
best.

2) If using the traditional makefile method then we suggest config-linux.h be used unless there is a more obviously
relevant header for your target.

3) Some C++ compilers have trouble compiling the “dirent” functions. If compilation errors are seen that reference
dirent then please use the patched file here.

4) Add the following macro to the start of config.h. This excludes an un-needed part of the ACE library that gives
compile issues in some cases.
#define ACE_HAS_POSITION_INDEPENDENT_POINTERS 0

ZXY100u Firmware utility for Zytronic ZXY100 controller

Library Purpose
ACE inter process communication library
Libusb USB device interface
QT Development and graphics

Page 2 of 8OPDD - Open Source driver

23/01/2015http://touch-base.com/documentation/OPDD.htm

5) If compiling on an unusual target using the traditional makefile method you might need to make changes to the
ACE option macros to enable the software to build correctly.

USB lib

Utilised when handling USB devices - libusb 1.0.x required. Version 1.0.6 was used in our development.
This library may be supplied as standard as part of the Linux distribution as many recent Linux distributions have started
shipping this library by default on their CD/DVD image. You may still need to select and install the library from the
CD/DVD/Internet repository
The software is available at http://sourceforge.net/projects/libusb/files/libusb-1.0.
Web site is http://sourceforge.net/projects/libusb/develop
You will require gcc version 4.0.0 or later to compile this library. Extract the library source code and then run the required
commands to configure, compile and install the library from the main library folder. The command sequence is typically:
cd libusb-1.0.0
./configure
make
make install
ln -s /usr/local/lib/libusb-1.0.so.0 /usr/lib/libusb-1.0.so.0
These commands may differ depending on distribution. Complete configuration information is available from the libusb
links or distribution suppliers.

Users of libusb should take care to comply with the terms of the GNU LGPL as it applies to the intended usage, details are

available from http://www.libusb.org.

QT library

Utilised by the calibration and general utilities program.
Version 4 required – available at http://qt.nokia.com/. Version 4.6.3 was used in our development.
This library may be supplied as standard as part of the Linux distribution. If using the Qt4 library distributed then it may be
necessary to modify the file "oputils/Makefile.am" to change the search path for the Qt header files and libraries.
If it is necessary to download and build the library then building and configuration information is available from the
suppliers.

Intergration

TSlib

Integrate OPDD module into Tslib

1. Copy the file “opdd.c” to the “plugins” subdirectory within your tslib source tree.
2. Modify the file “plugins/Makefile.in to add the following lines:

If ENABLE_OPDD_MODULE
OPDD_MODULE = opdd.la
else
OPDD_MODULE =
endif

Add the above lines after the similar section for “ENABLE_INPUT_MODULE”

3. Modify the line “pluginexec_LTLIBRARIES = \ …..” to add “$(OPDD_MODULE) \”

E.g.

pluginexec_LTLIBRARIES = \
$(LINEAR_MODULE) \
 …
 …
 $(OPDD_MODULE) \
$(INPUT_MODULE)

-Add the lines:-

opdd_la_SOURCES = opdd.c
opdd_la_LDFLAGS = -module $(LTSDN).

You should put the above lines after the line which reads:
 “input_la_LDFLAGS = -module $(LTSDN)”

4. Modify the file “configure.ac” in the root of the tslib source tree to add the following lines:-

AC_MSG_CHECKING([whether OPDD module is requested]) AC_ARG_ENABLE(input,
AS_HELP_STRING([--enable-opdd],
 [Enable building of OPDD module (de fault=yes)]),
[opdd_module=$enableval],
[opdd_module=yes])
AC_MSG_RESULT($opdd_module)
AM_CONDITIONAL(ENABLE_OPDD_MODULE, test "$opdd_modu le" = "yes")

You should add the above lines after the line:
“AM_CONDITIONAL(ENABLE_INPUT_MODULE, test "$input_m odule" = "yes")”

5. You can now follow the tslib instructions to build and install the library, plugins, and demo programs.
(e.g. ./autogen.sh && configure && make && make install)

Page 3 of 8OPDD - Open Source driver

23/01/2015http://touch-base.com/documentation/OPDD.htm

If, as part of the OPDD integration, you make any changes to the ts_conf file, please be aware it is sensitive to unexpected spaces.

Configure OPDD Project

1. Uncompress the file “opdd.zip” into a directory on your system. eg /usr/src -You will need to decide where you
want to install OPDD. The default location is “/opt/opdd”

2. Open the file “driver/linuxtslispointer.cpp” and find the line :

#define TSLIB_COM_PIPE "/opt/opdd/tslibPipe".

3. Modify this to reflect your installation location.

Build OPDD Project

1. Open a terminal
2. Change to the scripts directory in the source tree. eg “cd opdd/scripts”
3. Type “perl build.pl Full” to generate a full build (clean, rebuild automake files, build). or “perl build.pl Partial” to do

a partial build (build). If any errors occur you can check the file “opdd/build-master-linux.log” to find out more
detail (the output is also in ./<project>/.tmp.log.)

4. The “opdd” binary will be copied to the “opdd/release_linux” directory. You should copy this file to the installation
directory you chose in the previous section.

5. Copy the .opdd.ini file to the installation directory.

Running the software

OPDD can be executed in any manner that is appropriate to your implementation - subject to any limitations imposed by
the interface).
Typically, to run the OPDD driver type <installdir>/opdd” e.g. “/opt/opdd/opdd”
To run any of the tslib demo programs you must set the input device first.
You do this by typing the following command into the terminal:-

“export TSLIB_TSDEVICE=/opt/opdd/tslibPipe”

You can change the “/opt/opdd” section in the above command to reflect the installation path you have chosen. You can
now run any of the tslib demo programs. eg “ts_print”, “ts_demo”, etc. To calibrate, run the demo program “ts_calibrate”.
For more information about these demos see the tslib documentation.

X Interface

OPDD considerations for X
Users must have permission to be able to connect to the X.org server running on the machine otherwise the driver cannot
make a connection to X and subsequently will fail to move the pointer. Further, OPDD needs to be executed by a user who
has root permissions.

Configure OPDD Project

Uncompress the file “opdd.zip” into a directory on your system. eg /usr/src -You will need to decide where you want to
install OPDD. The default location is “/opt/opdd”

Build OPDD Project

1. Open a terminal
2. Change to the scripts directory in the source tree. eg “cd opdd/scripts”
3. Type “perl build.pl Full” to generate a full build (clean, rebuild automake files, build). or “perl build.pl Partial” to do

a partial build (build). If any errors occur you can check the file “opdd/build-master-linux.log” to find out more
detail.

4. The “opdd” binary will be copied to the “opdd/release_linux” directory. You should copy this file to the installation
directory you chose in the previous section.

5. Copy the .opdd.ini file to the installation directory.

Running the software

OPDD can be executed in any manner that is appropriate to your implementation - subject to any limitations imposed by
the interface. The following notes are for guidance and refer to implementing on "standard" platforms. For convenience we
supply a script to allow autolaunch of OPDD under X.
The file "driver/startopdd" should be copied to the install directory (e.g./opt/opdd) and made executable (chmod
755 /opt/opdd/startopdd).
The file /opt/opdd/opdd should be given root permissions ("chmod +s /opt/opdd/opdd")
If X is only being used by a single user (in the case of a media player device, etc) then:
The "$HOME/.xinitrc" of the user who will be running X should be modified to add the line "/opt/opdd/startopdd &"
If X is being used by many users and will be using a display manager then:
The file "/etc/gdm/Init/Default" should be modified to add the line "/opt/opdd/startopdd &" at the end.

User experiences

Useful user feedback or comment is documented here:

Notes

Serial Devices

Ubuntu 10.04 integration Library and configuration feedback

Page 4 of 8OPDD - Open Source driver

23/01/2015http://touch-base.com/documentation/OPDD.htm

You can configure the serial port that your touch screen is attached to by modifying the .opdd.ini file and changing the
“port=ttyS0” line. E.g. to connect to the second com port change the line to “port=ttyS1”

Settings file
The settings file opdd.ini contains the settings used by the driver. These are documented below:

Calibration

A number of calibration options are available under Linux and will be utilized with OPDD as required.

Utilities

General

The general utility is called "oputils". This module implements utility functions as required.
This utility uses the QT4 library. If using the Qt4 library distributed as part of the Linux distribution then it may be
necessary to modify the file "oputils/Makefile.am" to change the search path for the Qt header files and libraries.
Running oputils with no argument lists current options.
Pass the function parameter as required: oputils [parameter], e.g. optuils writeeepromcal.
Options that return data will output the value to stdio if not specified.

Setting Description
[opdd] Driver settings
number of devices number of devices supported by this package, must be 1 in current implementation
scale coordinates When true co-ordinates are scaled according to calibration data and monitor size, set to false

to pass thru co-ordinates to the pointer module unchanged (e.g. when using a 3rd party
pointer system)

tcpipport TCP/IP port address for inter process communications
stabilisation Stabilises pointer jitter. The value is expressed in pixels. E.g. with a value of 10 (hex)

movements less than 16 pixels from the previous recorded point is treated as unchanged.
This results in no cursor movement until a >16 difference is seen.

[opdd\1] Device settings
baud Baud rate when configured for a serial device
calxn Calibration X data
calyn Calibration Y data
connection type Selects the opdd module to use to communicate with the device e.g. USB =

OPDD_LINUX_USB

databits Data bits when configured for a serial device
monitor height Height of monitor in pixels used when scaling is in effect.

The calibrate utility sets this value
monitor width Width of monitor in pixels used when scaling is in effect.

The calibrate utility sets this value
mouseport Selects the opdd module to which output is directed – e.g. X = OPDD_LINUX_X_POINTER
parity Parity when configured for a serial device
pid USB product id when configured for a USB device
port Com port name
protocol tag Defines firmware protocol in use
stopbits No of stop bits when configured for a serial device
vid USB vendor id when configured for a USB device
write eeprom after cal Indicates if calibration is automatically stored in controllers eeprom – 0 = no, 1 = yes
<eof> End of file marker

Interface Calibration utility
TSlib Use the associated ts_calibrate program.
X We supply program "calibrate" which is used to initially calibrate the screen. A series of 4

points will be displayed which you need to touch.

EEprom This allows the storing and retrieving of EEPROM data.
Controller support will be added as required.

 Sept 10 Zytronic Zypos (ZXY)USB controller supported
 Dec 10 Data Modul, EasyTouch, USB controller supported
 Feb 11 EEprom read and write functions added
Function Parameter Description
EEprom Storage writeeepromcal Store the current driver calibration data on the controller EEPROM for

retrieval at a later date.
EEprom Retrieval readeepromcal Read stored calibration data from the controller EEPROM and use it as the

current calibration settings.
Notes:

1. The storage of EEPROM calibration data can be automated by modifying the .opdd.ini file and changing the "write
eeprom after cal" setting to 0x00000001.

EEprom Read readeeprom <val>

(device,addr.length)

Reads data from eeprom

Example: ‘Oputils readeeprom 1 0 4’ returns 4 bytes of data starting at
address 0 on device 1

EEprom Write writeeeprom <val>

(device,Addr,data)

Writes data to eeprom

Example: ‘opuutils writeeeprom 1 0 FF FE FD FC FB FA writes the 6 bytes
0xff – 0xfa to address 0 – 5 on device 1

Notes:

Page 5 of 8OPDD - Open Source driver

23/01/2015http://touch-base.com/documentation/OPDD.htm

Specialised

We also can supply / develop source utilities as required. This section lists available specialised utilities:

Zytronic ZXY100 serial firmware setting updates

Utility used to update firmware settings in the Zytronic ZXY100 serial controller. This is supplied when using the ZXY100
serial controller.
The list of supported firmware commands is:-

options that take an optional numeric value [n] will:

#set the value if specified
#output the current value to stdio if not specified

Application Programming Interface

OPDD supports a programming interface to allow client programs to communicate with the driver.

The API is implemented by the Client class and communicates with the driver using a TCP/IP link bound to localhost
(127.0.0.1).

The driver supports a number of commands which are implemented in ./drier/command.cpp.

These are mainly for internal use and not documented. A programmer can use this (and the corresponding client side code
in the supplied source) to extent the API as needed.

The supported commands are encapsulated in the public methods of the Client class:

public Client::Client();

The constructor for the client class.
Takes no arguments.

public Client::~Client();

The destructor for the client class.
Any open session is closed and stream mode terminat ed (output is directed to the system
mouse interface).

 public int Client::open();

Opens the TCP/IP link to the driver.
Defaults to port 4142, but this can be altered in t he.opdd.ini file if one exists in the
working directory.
Returns 0 for success, -1 for failure.

 public bool Client::StartStreamTouch();

Initiates stream touch mode. All touch data is dire cted to this client instead of the system
mouse interface.
Returns false in the event of an error.

public bool Client:: ReadStreamTouch(int & x, int & y, int & stylus, bool & touching

Reads data from the touch stream (initiated by Star tStreamTouch())
Arguments

x – returns the x co-ordinate for the current touch location
y – returns the y co-ordinate for the current touch location
stylus – for a multi touch controller returns the s tylus number (0 for non multi-
touch)

1. The underlying read / write code must be relevant to the controller in use as firmware eeprom read / write
commands will be specific to each controller type.

2. The source code of oputils serves as a source example should you need to read or write to eeprom from your own
code.

zxy100u The sensitivity of the touch screen is controlled using the Sensitivity and Threshold
parameters below:

 {sensitivity [n]}

The Coarse sensitivity can be changed between Option 1 to 4. This should be
initially used to set the overall coarse sensitivity of the sensor with the different
options relating to the sensor glass/overlay glass thickness used (guideline glass
thickness is displayed in millimetres along side each Option 1 to 4). Increasing the
Coarse Sensitivity will make the touch sensor more sensitive to an applied touch.

 {threshold [n]}

The Threshold control can then be used to set the fine sensitivity of the sensor.
The Threshold can be changed between a value of 12 and 100. Increasing the
Threshold will make the sensor less sensitive to an applied touch and decreasing
the threshold value will make the sensor more sensitive to an applied touch.

Please note: the Threshold control has the inverse affect to that of the Coarse
sensitivity control.

 {equalise } This forces the touch screen controller to normalise all the wire levels within the
sensor and take these normalised levels as new reference values for processing
information.

 {factoryreset } This will initiate a reset of the touch screen controller. After execution the
controller may take a few seconds to re-establish full operation to an applied touch.

 {restore } Restore factory default settings
 {version } Return firmware version number
 {update xxx.zyf } Update controller’s firmware from firmware update file

Page 6 of 8OPDD - Open Source driver

23/01/2015http://touch-base.com/documentation/OPDD.htm

touch – returns true if contact is currently taking place
Returns true if data is returned.
This function is expected to be called in worker th read and returns false ever second or so
to allow an opportunity for thread termination.

public bool Client::WriteEEPROM(int aDevice, int address, int length, const unsigned char * data);

If the device identified by aDevice supports eeprom writes then the data of specific length
is written to the address specified.

The meaning of “address” and the valid values will be dictated by the controller
implementation.

NB opdd currently only supports a single device, so aDevice must be 1.

public bool Client::ReadEEPROMProlog(int aDevice, int address, int length);

If the device identified by aDevice supports eeprom reads then a read operation for data of
specific length at the address specified is initiat ed. The caller should wait for the
completion of this operation using the “ eepromcalstate ” command, then use ReadEEPROMEpilog
to complete the read.

The meaning of “address” and the valid values will be dictated by the controller
implementation.

See oputils source code for a detailed example of t he use of this api.

NB opdd currently only supports a single device, so aDevice must be 1.

public bool Client::ReadEEPROMEpilog(unsigned char * data);

Complete a read operation initiated by Client::Read EEPROMProlog(). The data is copied to
the addressed by the data argument. This must be a caller provided block of memory of (at
least) the size specified by the length argument to Client::ReadEEPROMProlog()

Example code

The following code reads touch data in a worker thread.
This is taken from the Scribble example described below.

ACE_THR_FUNC_RETURN ReadThread(void * aArg)
{
 Client client; // construct a client interface object
 if (client.open() == -1) //open a connection with the driver
 {
 return (0); // something when wrong, bale o ut
 }
 if (!client.StartStreamTouch()) // start touch mode
 {
 return (0); // something when wrong, bale o ut
 }

 while (theRunReadThread)
 {
 TouchEvent* t = new TouchEvent;
 if (client.ReadStreamTouch(t->x,t->y,t->stylus,t->touc hing)) // read the touch data
 {
 QApplication::postEvent((QWidget*)aArg, t); // do something with the data read
 }
 else
 { // in the idle state ReadStreamTouch() will return false every second or so to allow thread
termination to take place

 }
 }
 return (0);
}

Example program

An example program is available to illustrate the use of the touch stream mode.
Scribble, located in ./examples/scribble, is an adaptation of the Qt scribble example.
Full instructions to build Qt examples are available in the Qt documentation, but generally you will use the following
commands from the scribble directory

qmake
make (or nmake on Windows)

Run the application to see the application shown below. This is a multi touch aware drawing application.
The current example supports a maximum of 2 touches, but the API itself is unlimited.

Page 7 of 8OPDD - Open Source driver

23/01/2015http://touch-base.com/documentation/OPDD.htm

Contact

For further information or technical assistance please email the technical support team at technical@touch-base.com

Page 8 of 8OPDD - Open Source driver

23/01/2015http://touch-base.com/documentation/OPDD.htm

